Metamorphic Rocks

<u>Metamorphism</u> ("change form") == solid state change in rock structure and mineralogy caused by heat, pressure, or chemically active fluids.

- Higher T & P than lithification
- New minerals form by solid-state recrystallization
- No change to bulk composition (same atoms present)
- like cooking NO MELTING

$\underline{\text{Heat}} \ (150^{\circ}\text{C} - 900^{\circ}\text{C})$

- Geothermal Gradient -Temp. change w/ depth = $15^{\circ} 30^{\circ}$ C / km $[30^{\circ}$ C / km * 30km = 900° C]
- Cause chemical reactions atoms move, recombine, bonds break and reform.
- Weakens xls and allows plastic flow

Pressure (up to 10,000 atms. (10 kilobars))

- Pressure Gradient change w/ depth = ~ 250 bars/km
- 5 km 35 km depth [250 bars/km * 35 km = 9 kbar)
- caused by burial & tectonic stress
- recrystallization into closer packing order own "high pressure minerals" (polymorphs)
- Lithostatic stress burial, equal in all directions
- Differential stress maximum compressive stress
 - o "uneven" stress causes folds and foliation (layers)
 - o platy mineral xls grow in direction of lower pressure:. foliation

Fluids

- Hot water (also: CO₂, oil & methane)
 - o Dissolve ions,
 - Transport ions from high pressure to low pressure (km's)
- Origin: water in buried sed., dehydration of minerals, magmatic intrusion

2/15/2007 Chap. 9 Page 1

Metamorphic Grade

== intensity of metamorphism: how high the T & P

- Low grade lower T & P
- High grade higher T & P
- higher grade = more changed

Temperature (C°)

Particular minerals exist under particular 7

- High & low pressure or temp. minera
- : some <u>combinations</u> of minerals are
- minerals present tell of max. T & P conditions
- areas can show bands of meta zones or *facies* (fig. 9.21, pg 263)

<-- Increasing Grade ~

Index Minerals
chlorite
muscovite
biotite
garnet
staurolite
kyanite
sillimanite

Types of metamorphism (settings)

- 1) regional ("Barrovian") (baking) most common
 - a. compressive stress due to:
 - i. burial (lithostatic)
 - ii. plate tectonic stress (differential)
 - 1. behind subduction zones
 - 2. continental collisions
 - b. large scale, over 1,000's of kms
 - c. often with belts of differing grades

- 2) contact (frying)
 - a. country rock around intrusions

- 3) shear
 - a. ground rock under high pressure in shear zone of fault
 - b. slickensides polished striated surface
 - c. cataclastic texture
 - i. shallow = fault breccia (*cataclasite*)
 - ii. deep = mylonite

- 4) shock
 - a. meteor impacts
 - b. stishovite (High-P quartz) only here (and deep)
 - c. KT boundary enriched with microtektites? (*Chicxulub*)

- 5) hydrothermal alteration
 - a. mid-ocean ridges, hot springs
 - b. economic mineral deposits Cu, Au, Pb, Zn

L-- Increasing Grade .

2.- Increasing Grade

Identification of Metamorphic Rocks (Lab #7)

Based on....

- texture most important (foliated vs. nonfoliated)
- mineral content (grade of minerals, index minerals)

Foliated rx (L "leaf" folio) (**not** the same as bedding)

• Foliation perpendicular to greatest stress direction also perpendicular to fold axies ("schistosity")

Examples:

- **slate** fine grained, platy minerals (mica) align, form planes of weakness
- **phyllite** imperfect slatey cleavage w/ shiny mica "sheen"
- **schist** coarser grained, bigger xl, >50% platy minerals (mica), *shiny*, some mineral segregation (dark/light layers)
- **gneiss** mineral segregation, banded some times w/ phorphyroblasts "augen" *eyes*, doesn't split
- **migmatite** ("mixed") partial melting of qz & feldspar, cross between gneiss & granite

Nonfoliated rx (generally equigranular)

- **skarn** calcite + garnet, pyroxene, etc. Contact meta. (lmstone)
- quartzite massive, fine grained sugary texture, from sandstone
- marble light colored, granular, from limestone (will fizz)
- hornfels v. fine xls, contact meta., like slate without foliation

Page 4

- **granulite** pyroxene & garnet
- amphibolite interlocking hornblende (amphibole) xls

Generally higher grade = coarser grained (more xl growth) Names modified by predominant minerals

- 1. garnet gneiss
- 2. muscovite schist

2/15/2007 Chap. 9